Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Biotechnol J ; 19(4): e2300740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581087

RESUMO

ß-Phenylethanol (2-PE), as an important flavor component in wine, is widely used in the fields of flavor chemistry and food health. 2-PE can be sustainably produced through Saccharomyces cerevisiae. Although significant progress has been made in obtaining high-yield strains, as well as improving the synthesis pathways of 2-PE, there still lies a gap between these two fields to unpin. In this study, the macroscopic metabolic characteristics of high-yield and low-yield 2-PE strains were systematically compared and analyzed. The results indicated that the production potential of the high-yield strain might be contributed to the enhancement of respiratory metabolism and the high tolerance to 2-PE. Furthermore, this hypothesis was confirmed through comparative genomics. Meanwhile, transcriptome analysis at key specific growth rates revealed that the collective upregulation of mitochondrial functional gene clusters plays a more prominent role in the production process of 2-PE. Finally, findings from untargeted metabolomics suggested that by enhancing respiratory metabolism and reducing the Crabtree effect, the accumulation of metabolites resisting high 2-PE stress was observed, such as intracellular amino acids and purines. Hence, this strategy provided a richer supply of precursors and cofactors, effectively promoting the synthesis of 2-PE. In short, this study provides a bridge for studying the metabolic mechanism of high-yield 2-PE strains with the subsequent targeted strengthening of relevant synthetic pathways. It also provides insights for the synthesis of nonalcoholic products in S. cerevisiae.


Assuntos
Álcool Feniletílico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Álcool Feniletílico/metabolismo , Multiômica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vias Biossintéticas , Fermentação
2.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473957

RESUMO

Chlorogenic acids (CGAs) are bioactive compounds widely used in the food, pharmaceutical, and cosmetic industries. Carthamus tinctorius is an important economic crop, and its suspension cells are rich in CGAs. However, little is known about the biosynthesis and regulation of CGAs in Carthamus tinctorius cells. This study first elucidated the regulatory mechanism of CGA biosynthesis in methyl jasmonate (MeJA)-treated Carthamus tinctorius cells and the role of the MeJA-responsive hydroxycinnamoyl transferase (HCT) gene in enhancing their CGA accumulation. Firstly, temporal changes in intracellular metabolites showed that MeJA increased the intracellular CGA content up to 1.61-fold to 100.23 mg·g-1. Meanwhile, 31 primary metabolites showed significant differences, with 6 precursors related to increasing CGA biosynthesis. Secondly, the transcriptome data revealed 3637 new genes previously unannotated in the Carthamus tinctorius genome and 3653 differentially expressed genes. The genes involved in the plant signaling pathway and the biosynthesis of CGAs and their precursors showed a general up-regulation, especially the HCT gene family, which ultimately promoted CGA biosynthesis. Thirdly, the expression of a newly annotated and MeJA-responsive HCT gene (CtHCT, CtNewGene_3476) was demonstrated to be positively correlated with CGA accumulation in the cells, and transient overexpression of CtHCT enhanced CGA accumulation in tobacco. Finally, in vitro catalysis kinetics and molecular docking simulations revealed the ability and mechanism of the CtHCT protein to bind to various substrates and catalyze the formation of four hydroxycinnamic esters, including CGAs. These findings strengthened our understanding of the regulatory mechanism of CGA biosynthesis, thereby providing theoretical support for the efficient production of CGAs.


Assuntos
Acetatos , Carthamus tinctorius , Ciclopentanos , Oxilipinas , Transferases , Transferases/metabolismo , Ácido Clorogênico/metabolismo , Carthamus tinctorius/genética , Simulação de Acoplamento Molecular , Transcriptoma , Nucleotidiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Microb Cell Fact ; 23(1): 88, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519954

RESUMO

BACKGROUND: The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. RESULTS: This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 ± 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. CONCLUSIONS: This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.


Assuntos
Diamino Aminoácidos , Halomonas , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Halomonas/genética , Halomonas/metabolismo , Pressão Osmótica , Perfilação da Expressão Gênica , Peroxidases/metabolismo
4.
Bioresour Technol ; 395: 130354, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272147

RESUMO

The influence of extracellular variations on the cellular metabolism and thereby the process performance at large-scale can be evaluated using the so-called scale-down simulators. Nevertheless, the major challenge is to design an appropriate scale-down simulator, which can accurately mimic the cell lifelines that record the flow paths and experiences of cells circulating in large-scale bioreactors. To address this, a dedicated SDSA (scale-down simulator application) was purposedly developed on the basis of black box model and process reaction model established for Penicillium chrysogenum strain as well as cell lifelines or trajectories information in an industrial-scale fermentor. Guided by the SDSA, the industrial-relevant metabolic regimes for substrate availability, i.e., excess, limitation and starvation, were successfully reproduced at laboratory-scale three-compartment scale-down (SD) system. In addition, such SDSA can also display individual process dynamics in each compartment, and demonstrate how individual factors influence the entire bioprocess performance, thus serving both educational and research purposes.


Assuntos
Reatores Biológicos , Penicillium chrysogenum , Penicillium chrysogenum/metabolismo
5.
Nat Protoc ; 19(2): 374-405, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38036926

RESUMO

RNA molecules perform various crucial roles in diverse cellular processes, from translating genetic information to decoding the genome, regulating gene expression and catalyzing chemical reactions. RNA-binding proteins (RBPs) play an essential role in regulating the diverse behaviors and functions of RNA in live cells, but techniques for the spatiotemporal control of RBP activities and RNA functions are rarely reported yet highly desirable. We recently reported the development of LicV, a synthetic photoswitchable RBP that can bind to a specific RNA sequence in response to blue light irradiation. LicV has been used successfully for the optogenetic control of RNA localization, splicing, translation and stability, as well as for the photoswitchable regulation of transcription and genomic locus labeling. Compared to classical genetic or pharmacologic perturbations, LicV-based light-switchable effectors have the advantages of large dynamic range between dark and light conditions and submicron and millisecond spatiotemporal resolutions. In this protocol, we provide an easy, efficient and generalizable strategy for engineering photoswitchable RBPs for the spatiotemporal control of RNA metabolism. We also provide a detailed protocol for the conversion of a CRISPR-Cas system to optogenetic control. The protocols typically take 2-3 d, including transfection and results analysis. Most of this protocol is applicable to the development of novel LicV-based photoswitchable effectors for the optogenetic control of other RNA metabolisms and CRISPR-Cas functions.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Ligação a RNA , Sistemas CRISPR-Cas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Splicing de RNA , RNA/genética , RNA/metabolismo
6.
J Hazard Mater ; 465: 133119, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38134689

RESUMO

The simultaneous sensing and remediation of multiple heavy metal ions in wastewater or soil with microorganisms is currently a significant challenge. In this study, the microorganism Bacillus subtilis was used as a chassis organism to construct two genetic circuits for sensing and adsorbing heavy-metal ions. The engineered biosensor can sense three heavy metal ions (0.1-75 µM of Pb2+ and Cu2+, 0.01-3.5 µM of Hg2+) in situ real-time with high sensitivity. The engineered B. subtilis TasA-metallothionein (TasA-MT) biofilm can specifically adsorb metal ions from the environment, exhibiting remarkable removal efficiencies of 99.5% for Pb2+, 99.9% for Hg2+and 99.5% for Cu2+ in water. Furthermore, this engineered strain (as a biosensor and absorber of Pb2+, Cu2+, and Hg2+) was incubated with biochar to form a hybrid biofilm@biochar (BBC) material that could be applied in the bioremediation of heavy metal ions. The results showed that BBC material not only significantly reduced exchangeable Pb2+ in the soil but also reduced Pb2+ accumulation in maize plants. In addition, it enhanced maize growth and biomass. In conclusion, this study examined the potential applications of biosensors and hybrid living materials constructed using sensing and adsorption circuits in B. subtilis, providing rapid and cost-effective tools for sensing and remediating multiple heavy metal ions (Pb2+, Hg2+, and Cu2+).


Assuntos
Carvão Vegetal , Mercúrio , Metais Pesados , Poluentes do Solo , Bacillus subtilis , Biodegradação Ambiental , Chumbo , Metais Pesados/análise , Íons , Solo , Poluentes do Solo/análise
7.
Bioprocess Biosyst Eng ; 46(11): 1677-1693, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37878184

RESUMO

The quality prediction of batch processes is an important task in the field of biological fermentation. However, dynamic nonlinearity, unequal sampling intervals, uneven duration, and multiple features of a batch process make this task challenging. Thus, the multiple-feature fusion transformer (MFFT) model is proposed for the time series quality prediction of a batch process. First, the application of sequence-to-sequence architecture enables MFFT to perform a wide range of sequence prediction tasks. Second, the transformer parallel operation model imposes no rigid requirement for the order of sequence input, allowing the model to deal with problems of unequal interval sampling and utilize the sequence information. Third, MFFT integrates a pretrained ResNet50 as a mycelium status classifier for fusing image information into the features. Moreover, a multiple-feature encoding structure is proposed to integrate sampling time and mycelium status. Finally, multiple tasks in penicillin fermentation have shown that MFFT significantly outperforms existing methods for time series prediction.


Assuntos
Micélio , Penicilinas , Fermentação , Fatores de Tempo
8.
Sheng Wu Gong Cheng Xue Bao ; 39(9): 3863-3875, 2023 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-37805860

RESUMO

Reducing lactate accumulation has always been a goal of the mammalian cell biotechnology industry. When animal cells are cultured in vitro, the accumulation of lactate is mainly the combined result of two metabolic pathways. On one hand, glucose generates lactate under the function of lactate dehydrogenase A (LDHA); on the other hand, lactate can be oxidized to pyruvate by LDHB or LDHC and re-enter the TCA cycle. This study comprehensively evaluated the effects of LDH manipulation on the growth, metabolism and human adenovirus (HAdV) production of human embryonic kidney 293 (HEK-293) cells, providing a theoretical basis for engineering the lactate metabolism in mammalian cells. By knocking out ldha gene and overexpression of ldhb and ldhc genes, the metabolic efficiency of HEK-293 cells was effectively improved, and HAdV production was significantly increased. Compared with the control cell, LDH manipulation promoted cell growth, reduced the accumulation of lactate and ammonia, significantly enhanced the efficiency of substrate and energy metabolism of cells, and significantly increased the HAdV production capacity of HEK-293 cells. Among these LDH manipulation measures, ldhc gene overexpression performed the best, with the maximum cell density increased by about 38.7%. The yield of lactate to glucose and ammonia to glutamine decreased by 33.8% and 63.3%, respectively; and HAdV titer increased by at least 16 times. In addition, the ATP production rate, ATP/O2 ratio, ATP/ADP ratio and NADH content of the modified cell lines were increased to varying degrees, and the energy metabolic efficiency was significantly improved.


Assuntos
Adenovírus Humanos , L-Lactato Desidrogenase , Animais , Humanos , L-Lactato Desidrogenase/genética , Ácido Láctico , Amônia , Células HEK293 , Glucose/metabolismo , Trifosfato de Adenosina/metabolismo , Rim/metabolismo , Mamíferos/metabolismo
9.
Microb Cell Fact ; 22(1): 185, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715289

RESUMO

BACKGROUND: In the recombinant protein market with broad economic value, the rapid development of synthetic biology has made it necessary to construct an efficient exocrine expression system for the different heterologous proteins. Yarrowia lipolytica possesses unique advantages in nascent protein transport and glycosylation modification, so it can serve as a potential protein expression platform. Although the Po1 series derived from W29 is often used for the expression of the various heterologous proteins, the ability of W29 to secrete proteins has not been verified and the Po1 series has been found to be not convenient for further gene editing. RESULTS: A total of 246 Y. lipolytica strains were evaluated for their secretory capacity through performing high-throughput screening in 48-well plate. Thereafter, following two rounds of shake flask re-screening, a high-secreting protein starting strain DBVPG 5851 was obtained. Subsequently, combined with the extracellular protein types and relative abundance information provided by the secretome of the starting strain, available chassis cell for heterologous protein expression were preliminarily constructed, and it was observed that the most potential signal peptide was derived from YALI0D20680g. CONCLUSIONS: This study offers a novel perspective on the diversification of Y. lipolytica host cells for the heterologous protein expression and provides significant basis for expanding the selection space of signal peptide tools in the future research.


Assuntos
Yarrowia , Yarrowia/genética , Secretoma , Ensaios de Triagem em Larga Escala , Glicosilação , Proteínas Recombinantes/genética
10.
Bioengineering (Basel) ; 10(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37370675

RESUMO

The Valley of Death confronts industrial biotechnology with a significant challenge to the commercialization of products. Fortunately, with the integration of computation, automation and artificial intelligence (AI) technology, the industrial biotechnology accelerates to cross the Valley of Death. The Fourth Industrial Revolution (Industry 4.0) has spurred advanced development of intelligent biomanufacturing, which has evolved the industrial structures in line with the worldwide trend. To achieve this, intelligent biomanufacturing can be structured into three main parts that comprise digitalization, modeling and intellectualization, with modeling forming a crucial link between the other two components. This paper provides an overview of mechanistic models, data-driven models and their applications in bioprocess development. We provide a detailed elaboration of the hybrid model and its applications in bioprocess engineering, including strain design, process control and optimization, as well as bioreactor scale-up. Finally, the challenges and opportunities of biomanufacturing towards Industry 4.0 are also discussed.

11.
Proc Natl Acad Sci U S A ; 120(25): e2302779120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307493

RESUMO

Supply of Gibbs free energy and precursors are vital for cellular function and cell metabolism have evolved to be tightly regulated to balance their supply and consumption. Precursors and Gibbs free energy are generated in the central carbon metabolism (CCM), and fluxes through these pathways are precisely regulated. However, how fluxes through CCM pathways are affected by posttranslational modification and allosteric regulation remains poorly understood. Here, we integrated multi-omics data collected under nine different chemostat conditions to explore how fluxes in the CCM are regulated in the yeast Saccharomyces cerevisiae. We deduced a pathway- and metabolism-specific CCM flux regulation mechanism using hierarchical analysis combined with mathematical modeling. We found that increased glycolytic flux associated with an increased specific growth rate was accompanied by a decrease in flux regulation by metabolite concentrations, including the concentration of allosteric effectors, and a decrease in the phosphorylation level of glycolytic enzymes.


Assuntos
Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae , Fosforilação , Regulação Alostérica , Carbono
12.
Protein Expr Purif ; 208-209: 106293, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37137401

RESUMO

Porcine circovirus type-2 capsid protein contains a major immunodominant epitope used as a subunit vaccine. Transient expression in mammalian cells is an efficient process for producing recombinant proteins. However, there is still a lack of research on the efficient production of virus capsid proteins in mammalian cells. Here we present a comprehensive study to investigate and optimize the production process of a model "difficult-to-express" virus capsid protein, PCV2 capsid protein in HEK293F transient expression system. The study evaluated the transient expression of PCV2 capsid protein in the mammalian cell line HEK293F and investigated the subcellular distribution by confocal microscopy. In addition, the RNA sequencing (RNA-seq) was used to detect the differential expression of genes after cells transfected with pEGFP-N1-Capsid or empty vectors. The analysis revealed that the PCV2 capsid gene affected a panel of differential genes of HEK293F cells involved in protein folding, stress response, and translation process, such as SHP90ß, GRP78, HSP47, and eIF4A. An integrated strategy of protein engineering combined with VPA addition was applied to promote the expression of PCV2 capsid protein in HEK293F. Moreover, this study significantly increased the production of the engineered PCV2 capsid protein in HEK293F cells, reaching a yield of 8.7 mg/L. Conclusively, this study may provide deep insight for other "difficult-to-express" virus capsid proteins in the mammalian cell system.


Assuntos
Proteínas do Capsídeo , Circovirus , Suínos , Animais , Humanos , Circovirus/genética , Células HEK293 , Capsídeo/metabolismo , Proteínas Recombinantes/genética , Anticorpos Antivirais , Mamíferos
13.
Biotechnol Prog ; 39(4): e3352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37141532

RESUMO

The strategy of temperature downshift has been widely used in the biopharmaceutical industry to improve antibody production and cell-specific production rate (qp ) with Chinese hamster ovary cells (CHO). However, the mechanism of temperature-induced metabolic rearrangement, especially important intracellular metabolic events, remains poorly understood. In this work, in order to explore the mechanisms of temperature-induced cell metabolism, we systematically assessed the differences in cell growth, antibody expression, and antibody quality between high-producing (HP) and low-producing (LP) CHO cell lines under both constant temperature (37°C) and temperature downshift (37°C→33°C) settings during fed-batch culture. Although the results showed that low-temperature culture during the late phase of exponential cell growth significantly reduced the maximum viable cell density (p < 0.05) and induced cell cycle arrest in the G0/G1 phase, this temperature downshift led to a higher cellular viability and increased antibody titer by 48% and 28% in HP and LP CHO cell cultures, respectively (p < 0.001), and favored antibody quality reflected in reduced charge heterogeneity and molecular size heterogeneity. Combined extra- and intra-cellular metabolomics analyses revealed that temperature downshift significantly downregulated intracellular glycolytic and lipid metabolic pathways while upregulated tricarboxylic acid (TCA) cycle, and particularly featured upregulated glutathione metabolic pathways. Interestingly, all these metabolic pathways were closely associated with the maintenance of intracellular redox state and oxidative stress-alleviating strategies. To experimentally address this, we developed two high-performance fluorescent biosensors, denoted SoNar and iNap1, for real-time monitoring of intracellular nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide + hydrogen (NAD+ /NADH) ratio and nicotinamide adenine dinucleotide phosphate (NADPH) amount, respectively. Consistent with such metabolic rearrangements, the results showed that temperature downshift decreased the intracellular NAD+ /NADH ratio, which might be ascribed to the re-consumption of lactate, and increased the intracellular NADPH amount (p < 0.01) to scavenge intracellular reactive oxygen species (ROS) induced by the increased metabolic requirements for high-level expression of antibody. Collectively, this study provides a metabolic map of cellular metabolic rearrangement induced by temperature downshift and demonstrates the feasibility of real-time fluorescent biosensors for biological processes, thus potentially providing a new strategy for dynamic optimization of antibody production processes.


Assuntos
Técnicas de Cultura Celular por Lotes , NAD , Cricetinae , Animais , Cricetulus , NAD/metabolismo , Células CHO , Temperatura , NADP , Ácido Láctico/metabolismo , Anticorpos/metabolismo , Oxirredução
14.
Biotechnol J ; 18(5): e2200444, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36796787

RESUMO

Metabolic reprogramming has been coined as a hallmark of cancer, accompanied by which the alterations in metabolite levels have profound effects on gene expression, cellular differentiation, and the tumor environment. Yet a systematic evaluation of quenching and extraction procedures for quantitative metabolome profiling of tumor cells is currently lacking. To achieve this, this study is aimed at establishing an unbiased and leakage-free metabolome preparation protocol for HeLa carcinoma cell. We evaluated 12 combinations of quenching and extraction methods from three quenchers (liquid nitrogen, -40°C 50% methanol, 0.5°C normal saline) and four extractants (-80°C 80% methanol, 0.5°C methanol/chloroform/water [1:1:1 v/v/v], 0.5°C 50% acetonitrile, 75°C 70% ethanol) for global metabolite profiling of adherent HeLa carcinoma cells. Based on the isotope dilution mass spectrometry (IDMS) method, gas/liquid chromatography in tandem with mass spectrometry was used to quantitatively determine 43 metabolites including sugar phosphates, organic acids, amino acids (AAs), adenosine nucleotides, and coenzymes involved in central carbon metabolism. The results showed that the total amount of the intracellular metabolites in cell extracts obtained using different sample preparation procedures with the IDMS method ranged from 21.51 to 295.33 nmol per million cells. Among 12 combinations, cells that washed twice with phosphate buffered saline (PBS), quenched with liquid nitrogen, and then extracted with 50% acetonitrile were found to be the most optimal method to acquire intracellular metabolites with high efficiency of metabolic arrest and minimal loss during sample preparation. In addition, the same conclusion was drawn as these 12 combinations were applied to obtain quantitative metabolome data from three-dimensional (3D) tumor spheroids. Furthermore, a case study was carried out to evaluate the effect of doxorubicin (DOX) on both adherent cells and 3D tumor spheroids using quantitative metabolite profiling. Pathway enrichment analysis using targeted metabolomics data showed that DOX exposure would significantly affect AA metabolism-related pathways, which might be related to the mitigation of redox stress. Strikingly, our data suggested that compared to two-dimensional (2D) cells the increased intracellular glutamine level in 3D cells benefited replenishing the tricarboxylic acid (TCA) cycle when the glycolysis was limited after dosing with DOX. Taken together, this study provides a well-established quenching and extraction protocol for quantitative metabolome profiling of HeLa carcinoma cell under 2D and 3D cell culture conditions. Based on this, quantitative time-resolved metabolite data can serve to the generation of hypotheses on metabolic reprogramming to reveal its important role in tumor development and treatment.


Assuntos
Carcinoma , Metanol , Humanos , Metanol/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos , Etanol/química , 2-Propanol , Técnicas de Cultura de Células em Três Dimensões , Acetonitrilas/química , Nitrogênio
15.
Biotechnol Lett ; 45(4): 449-461, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36707453

RESUMO

Accurate monitoring of dissolved oxygen (DO) is vital for aerobic fermentation process control. This work presents an autoclavable Micro-Dissolved oxygen Sensor (MDS) that can monitor real time DO. The proposed sensor is much cheaper to be manufactured (< $35) and can be adapted to varying measurement environments. An ultra-micropore matrix was created using femtosecond laser processing technology to reduce flow dependency of probe signals. The validity of the proposed DO sensor was verified by testing it under different DO levels. The result revealed consistency between the new designed sensor and a commercial DO sensor. The obtained sensitivity was- 7.93 µA·L·mg-1 (MDS with ultra-micropore matrix). Moreover, the MDS can function without an oxygen-permeable membrane and a solid electrolyte was used which reduced the response time (4.6 s). For real-time monitoring, the stability of the MDS was validated during a yeast batch fermentation carried out until 18 h.


Assuntos
Oxigênio , Saccharomyces cerevisiae , Fermentação , Lasers
16.
Bioengineering (Basel) ; 9(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36354521

RESUMO

Morphology plays an important role in the fermentation bioprocess of filamentous fungi. In this study, we investigated the controlling strategies of morphology that improved the efficiency of Rhizomucor miehei lipase (RML) production using a high-yield Aspergillus oryzae. First, the inoculated spore concentrations were optimized in seed culture, and the RML activity increased by 43.4% with the well-controlled mycelium pellets in both ideal sizes and concentrations. Then, the initial nitrogen source and agitation strategies were optimized to regulate the morphology of Aspergillus oryzae in a 5 L bioreactor, and the established stable fermentation system increased the RML activity to 232.0 U/mL, combined with an increase in total RML activity from 98,080 U to 487,179 U. Furthermore, the optimized fermentation strategy was verified by a high-yield Aspergillus oryzae and achieved an additional improvement of RML activity, up to 320.0 U/mL. Moreover, this optimized fermentation bioprocess was successfully scaled up to a 50 L bioreactor, and the RML activity reached 550.0 U/mL. This work has established a stable precision fermentation bioprocess for RML production by A. oryzae in bioreactors, and the controlling strategy developed in this study could potentially be extended to an industrial scale for RML production with high efficiency.

17.
Microb Cell Fact ; 21(1): 238, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36376878

RESUMO

BACKGROUND: Our recent multi-omics analyses of glucoamylase biosynthesis in Aspergillus niger (A. niger) suggested that lipid catabolism was significantly up-regulated during high-yield period under oxygen limitation. Since the catabolism of fatty acids can provide energy compounds such as ATP and important precursors such as acetyl-CoA, we speculated that enhancement of this pathway might be beneficial to glucoamylase overproduction. RESULTS: Based on previous transcriptome data, we selected and individually overexpressed five candidate genes involved in fatty acid degradation under the control of the Tet-on gene switch in A. niger. Overexpression of the fadE, fadA and cyp genes increased the final specific enzyme activity and total secreted protein on shake flask by 21.3 ~ 31.3% and 16.0 ~ 24.2%, respectively. And a better inducible effect by doxycycline was obtained from early logarithmic growth phase (18 h) than stationary phase (42 h). Similar with flask-level results, the glucoamylase content and total extracellular protein in engineered strains OE-fadE (overexpressing fadE) and OE-fadA (overexpressing fadA) on maltose-limited chemostat cultivation were improved by 31.2 ~ 34.1% and 35.1 ~ 38.8% compared to parental strain B36. Meanwhile, intracellular free fatty acids were correspondingly decreased by 41.6 ~ 44.6%. The metabolomic analysis demonstrated intracellular amino acids pools increased 24.86% and 18.49% in two engineered strains OE-fadE and OE-fadA compared to B36. Flux simulation revealed that increased ATP, acetyl-CoA and NADH was supplied into TCA cycle to improve amino acids synthesis for glucoamylase overproduction. CONCLUSION: This study suggested for the first time that glucoamylase production was significantly improved in A. niger by overexpression of genes fadE and fadA involved in fatty acids degradation pathway. Harnessing the intracellular fatty acids could be a strategy to improve enzyme production in Aspergillus niger cell factory.


Assuntos
Aspergillus niger , Glucana 1,4-alfa-Glucosidase , Glucana 1,4-alfa-Glucosidase/metabolismo , Aspergillus niger/metabolismo , Acetilcoenzima A/metabolismo , Aminoácidos/metabolismo , Ácidos Graxos/metabolismo , Trifosfato de Adenosina/metabolismo
18.
Biotechnol Bioeng ; 119(12): 3509-3525, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36062959

RESUMO

The halophilic bacterium Halomonas elongata DSM 2581T generally adapts well to high level of salinity by biosynthesizing ectoine, which functions as an important compatible solute protecting the cell against external salinity environment. Halophilic bacteria have specific metabolic activities under high-salt conditions and are gradually applied in various industries. The present study focuses on investigating the physiological and metabolic mechanism of H. elongata DSM 2581T driven by the external salinity environment. The physiological metabolic dynamics under salt stress were investigated to evaluate the effect of NaCl stress on the metabolism of H. elongata. The obtained results demonstrated that ectoine biosynthesis transited from a nongrowth-related process to a growth-related process when the NaCl concentration varied from 1% to 13% (w/v). The maximum biomass (Xm = 41.37 g/L), and highest ectoine production (Pm = 12.91 g/L) were achieved under 8% NaCl. Moreover, the maximum biomass (Xm ) and the maximum specific growth rates (µm ) showed a first rising and then declining trend with the increased NaCl stress. Furthermore, the transcriptome analysis of H. elongata under different NaCl concentrations demonstrated that both 8% and 13% NaCl conditions resulted in increased expressions of genes involved in the pentose phosphate pathway, Entner-Doudoroff pathway, flagellar assembly pathway, and ectoine metabolism, but negatively affected the tricarboxylic acid cycle and fatty acid metabolism. At last, the proposed possible adaptation mechanism under the optimum NaCl concentration in H. elongata was described.


Assuntos
Halomonas , Cloreto de Sódio/metabolismo
19.
Anal Chem ; 94(33): 11659-11669, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35942642

RESUMO

The "design-build-test-learn" (DBTL) cycle has been adopted in rational high-throughput screening to obtain high-yield industrial strains. However, the mismatch between build and test slows the DBTL cycle due to the lack of high-throughput analytical technologies. In this study, a highly efficient, accurate, and noninvasive detection method of gentamicin (GM) was developed, which can provide timely feedback for the high-throughput screening of high-yield strains. First, a self-made tool was established to obtain data sets in 24-well plates based on the color of the cells. Subsequently, the random forest (RF) algorithm was found to have the highest prediction accuracy with an R2 value of 0.98430 for the same batch. Finally, a stable genetically high-yield strain (998 U/mL) was successfully screened out from 3005 mutants, which was verified to improve the titer by 72.7% in a 5 L bioreactor. Moreover, the verified new data sets were updated on the model database in order to improve the learning ability of the DBTL cycle.


Assuntos
Gentamicinas , Ensaios de Triagem em Larga Escala , Reatores Biológicos , Computadores , Aprendizado de Máquina
20.
Sheng Wu Gong Cheng Xue Bao ; 38(8): 3099-3109, 2022 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-36002435

RESUMO

Microbiology is a key basic professional course for all the students specializing in biology, biotechnology and related majors. To date, microbiology is mainly taught in Chinese within colleges and universities in China. Development of a microbiology course that is taught in English may satisfy the diversified learning needs of the students and promote the "Double First-Class" initiative. We started to teach the microbiology course in English at the East China University of Science and Technology since 2016. This practice was associated with reform and innovation in the teaching methods and contents. The microbiology course taught in English greatly attracted the interest of the attending students and helped improve their professional English learning as well as scientific research. This course provided important support for fostering innovative professional first-class undergraduates under the context of the "Double First-Class" initiative.


Assuntos
Aprendizagem , Estudantes , China , Humanos , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...